STRESS STUDIES IN EDGE-DEFINED FILM-FED GROWTH OF SILICON RIBBONS

MOBIL SOLAR ENERGY CORP.

J. Kalejs

TECHNOLOGY	REPORT DATE
ADVANCED MATERIALS RESEARCH TASK	June 19, 1985
APPROACH STRESS AND EFFICIENCY STUDIES IN EFG	STATUS • HORIZONTAL TEMPERATURE VARIATIONS CAN GIVE STRESS REDUCTIONS, BUT NOT SUF- FICIENT TO OVERCOME CREEP LIMITATIONS ON GROWTH SPEED IN VERTICAL MODE.
CONTRACTOR MOBIL SOLAR ENERGY CORPORATION, CONTRACT NUMBER 956312 GOALS • TO DEFINE MINIMUM STRESS CONFIGURATION FOR SILICON SHEET GROWTH. • 10 QUANTIFY DISLOCATION ELECTRICAL ACTIVITY AND LIMITS ON CELL EFFICIENCY. • TO STUDY BULK LIFETIME DEGRADATION DUE TO INCREASE IN DOPING LEVELS.	QUANTITATIVE HIGH RESOLUTION EBIC ANALYSIS DEVELOPED: - EBIC STUDIES DEMONSTRATE POINT DEFECT LIMITATIONS ON DIFFUSION LENGTH IN FZ AND CZ SILICON HEAT TREATED AND STRESSED ABOVE 1200°C AND COOLED RAPIDLY. NO DEPENDENCE ON OXYGEN OR CARBON LEVELS. SIMILAR RESULTS FOR EFG SHEET. LOW RESISTIVITY AS-GROWN EFG MATERIAL DIFFUSION LENGTHS IMPROVED BY GALLIUM OVER BORON DOPANT.

Low-Stress EFG Configurations

- STRESS, DISLOCATION DENSITIES REDUCED ONLY AT EXPENSE OF GROWTH SPEED CAPACITY:
 - FOR INTERFACE GRADIENTS $\leq 1000^{\circ}$ C, SPEED IS LIMITED TO 1-1.5 CM/MIN.
 - N_D ≤ 1 x 10⁵/cm², Lüders strain occurrence FLIMINATED, RESIDUAL STRESS IS REDUCED.
- HORIZONTAL GRADIENT MODELING SHOWS SOME PROMISE FOR STRESS MANIPULATION BELOW 1200°C TO 900°C, WHERE CREEP IS STILL SIGNIFICANT, BUT WILL NOT ALLOW SPEED CAPACITY INCREASES.
- INCLINED INTERFACE GROWTH APPEARS TO BE ONLY ALTERNATIVE TO OVERCOME HIGH TEMPERATURE CREEP LIMITATION.

HIGH STRESS, 2 cm/min, $N_D \sim 10^6$ to $10^7/\text{cm}^2$

Low stress, 1 cm/min, $\rm N_D \lesssim 1 \times 10^5/cm^2$

New Interpretation of Stress-Strain Effects in High-Speed Sheet Growth (J. W. Hutchinson, Harvard University)

 NON-THERMAL INCLASTIC STRAIN CONTRIBUTES TO INTERFACE VELOCITY NONUNIFORMITY

 IMPLICATIONS OF VELOCITY NONUNIFORMITY ON INTERFACE SHAPE, STRUCTURE UNKNOWN.

Stress Analysis with Horizontal Temperature Gradients

- 8 HIGH CREEP CONDITION, V = 3 CH/MIN, WIDTH OF 5 CM.
- # PARABULIC HORIZONTAL PROFILE:
 - HORIZONTAL INTERFACE PROFILE.
 - PEAK DIFFERENCE $\Delta t_{\mbox{\scriptsize MAX}}$ occurs at distance $\Delta x_{\mbox{\scriptsize MAX}}$ from interface.

I ANGELLE WELL TO

Maximum Residual (Room Temperature) Stress (MPa) for Horizontal Temperature Field Variations

A) $SO = 500^{\circ} \text{C/cm}$. $SI = 60^{\circ} \text{C/cm}$

		∆T _{MAX}				
		0	50	100	150	200
	0.5	67.0	63.0			
$\Delta X_{M\Delta X}$	1.0	67.0	62.8	59.9		
(CM)	2.0	67.0	69.6	77.4	85.6	84.0
	3.0	67.0	63.0 62.8 69.6 68.8	74.5		

B) $SO = 1250^{\circ}\text{C/cm}$, $SI = 40^{\circ}\text{C/cm}$

		ΔΤ _{ΜΑΧ}				
		0	50	100	200	300
1	0.5	474	486	501		
	10	474	472	470		
ΔX _{MAX} (cm)	۷.0	474	460	446		
(CM)	3.0	474	459	444	415	387
	5.0	474	463	453	433	414

EBIC Measurement Configurations

- @ DESIRE HIGH RESOLUTION ON L HEASUREMENT.
- B RELATE SAMPLE INHONOGENEITIES IN L TO BULK L (LARGE AREA MEASUREMENT).

High magnification EBIC line scans in stressed carbon-rich (111) ${\sf CZ}$ silicon.

High-Resolution EBIC Results

- LARGE DIFFERENCES FOUND BETWEEN SURFACE AND EDGE CROSS SECTION MEASUREMENTS OF DIFFUSION LENGTH BY EBIC.
- ◆ DIFFERENCE ATTRIBUTED TO ABILITY TO RESOLVE DIFFUSION LENGTH INHOMOGENEITIES IN NEAR-SURFACE REGIONS OF STRESSED SAMPLES AT ≥ 500X.
- CAUTION MUST BE EXERCISED IN INTERPRETATION OF EDGE CROSS SECTION EBIC MEASUREMENTS DUE TO GEOMETRICAL EFFECTS IN ADDITION TO MATERIAL INHOMOGENEITIES.

EBIC Characterization

- Scope of the Present Study:
 - CZ SILICON OF VARIOUS CARBON LEVELS AND FZ SILICON STRESSED ABOVE 1200°C, AND EFG SHEET.
 - CRYSTAL GROWTH FURNACE 17 AND SEALED, EVACUATED QUARTZ AMPOULE ANNEALS.
- DISLOCATION DENSITY DEPENDENCE OF L WITH N_D UP TO ${\sim}1~{\rm x}~10^7/{\rm cm}^2$.
 - Effect of Post-Deformation one-hour anneals at 575°C and 850°C .

FZ and Cz Silicon Wafer Description for Samples Stressed at 1370°C in Four-Point Bending

Sample	0, (cm ⁻³)	C _s (cm ⁻³)	N _D (As-Grown) (cm ⁻²)	Stress (MPa)	N _D (cm ⁻²)	N _D (cm ⁻²)
(111) FZ (#15)	<10 ¹⁶	<10 ¹⁶	0	8.	1 × 10 ⁶	<10 ⁴
(111) FZ (#17)	<10 ¹⁶	<10 ¹⁶	0	14	1 x 10 ⁷	5 x 10 ⁴
(100) CZ (#25)	~10 ¹⁸	<10 ¹⁶	0	14	~10 ⁷	<5 x 10 ⁴
(111) CZ (#9,	~10 ¹⁸	4 x 10 ¹⁷	~10 ⁴	7	~10 ⁶ ·	2 x 10 ⁴

EBIC line scans for stressed FZ silicon sample #17C in central high dislocation density (~1 x $10^7/{\rm cm}^2$) region: (a) after four-point bending at $1370^0{\rm C}$; (b) after one-hour anneal at $575^0{\rm C}$; (c) after one-hour anneal at $850^0{\rm C}$.

Observations

- Anneals above 1200°C in evacuated quartz ampoule in quartz tube furnace and crystal growth furnace have similar effects in degrading L.
- L IS 15-25 MICRONS IN DISLOCATION-FREE REGIONS; DISLOCATIONS UP TO ~1 x 107/cm2 DEGRADE IT TO 10-15 MICRONS.
- \bullet Subsequent one-hour anneals at 575°C and 850°C raise L by factor of two at best (much below starting L \sim 150 microns).
- L VALUES ARE INDEPENDENT OF OXYGEN AND CARBON CONCENTRATIONS, AND SIMILAR TO EFG AS-GROWN MATERIAL.

Conclusions

- L IS POINT DEFECT LIMITED TO RANGE OF ABOUT 20 MICRONS AND IS FIXED BY COOLING RATE FROM HIGH TEMPERATURES.
- IN-DIFFUSION OF SLOW DIFFUSING IMPURITIES RULED OUT -- NO GRADIENTS.
- IF IN-DIFFUSION BY IRON OCCURS, DISLOCATIONS, CARBON AND OXYGEN DO NOT PRODUCE SIGNIFICANT GETTERING WITH ANNEALING FOR ONE HOUR AT 575°C AND 850°C.

Comparison of Boron and Gallium-Doped EFG Material As-Grown Quality as a Function of Resistivity

RESISTIVITY (OHM-CM)	DOPANT TYPE	SPV L (MICRONS)
UNDOPED (> 15)		40-60
5	BORON GALLIUM	38 70
1	BORON GALLIUM	40 55
0.2	BORON GALLIUM	27 45

(+)

ADVANCED SILICON SHEET

Future Work

- EBIC STUDIES OF FZ SILICON STRESSED AT 600-1000^OC, COOLED UNDER LOAD
 - SUGGESTION IS THAT DISLOCATION ELECTRICAL ACTIVITY MAY DIFFER WHEN COOLED WITH AND WITHOUT STRESS.
 - Use information to help identify temperature of generation of dislocations in EFG sheet-stress conditions.
 - PHOSPHORUS GETTERING (900°C) RESPONSE.
- CONTINUED CHARACTERIZATION AND COMPARISON OF LOW RESISTIVITY BORON AND GALLIUM DOPANT EFFECTS.
- Modeling of Horizontal Temperature Profiles in SHEET GROWTH.
- EXAMINATION OF FEASIBILITY OF INCLINED INTERFACE EFG FOR STRESS REDUCTION.